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The properties of low-amplitude surface waves propagating in an ice channel are investigated in the shallow-water approximation. 
The ice cover is modelled either by a rigid cap or by a thin elastic plate floating on a liquid surface. It is shown that an ice channel 
is a waveguide for surface waves. The dispersive properties of the natural oscillations of the liquid in the channel are investigated. 
The resonance velocities Iof the motion of the load on the channel surface, at which the amplitude of the forced oscillations of 
the liquid increases without limit in time, are determined. The decay instability of the natural oscillations of high harmonics with 
respect to waves of the first mode is demonstrated. The process is described by the standard equations for non-linear three-wave 
interaction. The investigations lead to the conclusion that critical modes of motion of a boat are realizable in an ice channel. 
Q 1998 Elsevier Science Ltd. All rights reserved. 

Linear inhomogeneities in an ice cover may serve as waveguides along which flexural-gravity edge waves 
propagate [l-6]. Thjis problem has been investigated theoretically mainly for straight cracks and ice 
ridges. It has been observed [6] that a through crack in the ice cover is the limiting case of a channel 
whose width approaches zero. Hence an ice channel is also a waveguide for flexural-gravity waves. The 
waveguide properties of channels in the ice cover have never been studied before. 

Studies of waveguide effects in hydrodynamics are usually concerned with changes in the spectral 
composition near the coast or with the trapping of surface-wave energy by underwater obstacles. In 
the case considered here, besides, one is also interested in various aspects of the influence of natural 
oscillations in the channel on a boat moving in it. 

It is well known [:I] that the wave resistance of a boat in a narrow channel with rigid walls and an 
open water surface is a non-monotone function of the boat’s speed. As the boat moves, a flow is created 
in the vicinity of the boat’s position and also at some distance ahead of it. If the boat’s speed is less 
than the first critical velocity ul, the flow is directed against the boat’s motion. If the boat’s speed exceeds 
the second critical velocity u2, the directions of the flow and the boat’s motion coincide. At speeds 
u1 < 2) < u2 the flow around the boat is of a complicated, non-steady nature. 

The special resistance properties of the motion of boats in a channel are due to the presence of the 
walls. Waves diverging from the boat are reflected from the walls, their reflections hit the boat’s hull, 
and this results in the superposition of wave systems that affect the wave resistance. In the case of an 
ice channel there are no walls. However, the continuous ice cover outside the channel reflects waves 
in the same way as walls do, since it possesses fairly strong elastic properties under bending deformations. 

The main purpose. of this purpose is to demonstrate the analogy between an ordinary channel with 
solid walls and an ice channel and to estimate the possibility of critical modes of motion of a boat in 
an ice channel. 

1. THE NATURAL OSCILLATIONS OF A LIQUID IN AN ICE CHANNEL 

Ice cover represented by a rigid cup. Consider a layer of shallow liquid of depth H under a solid cap 
(“ice cover”) with a gap in the form of an infinite strip of width 2u with straight edges (the “channel”). 
The linearized equations of motion of the liquid are 

a 
~+HAcp=o~ a’p -+gq=O, (xl<a; Acp=O, (~(>a at (1.1) 

where IJ is the perturbation of the liquid surface in the channel relative to the horizontal equilibrium 
position, cp is the velocity potential, andx, y and t are the horizontal coordinates and time, respectively. 
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We will assume that the shallow-water approximation is applicable if H/a < l/2. Equations (1.1) hold 
because the waves in question are of low amplitude. 

In dimensionless variables, indicated by primes (which will be omitted later) 

t= a t’, 7- gH 
x=UX’, y=ay’ 

Eqs (1.1) may be written in the form 

Acp=O, [xl>1 

(1.2) 

(1.3) 

The solutions of Eqs (1.3) in the regions 1 x 1 > 1 and 1 x 1 c 1 must be related by conditions implied 
by the laws of conservation of mass and momentum 

limf aNq 
57 

= limr aNV *p* N=O,l (l-4) 

(lim: = lim 
r+fl+O’ 

lim; = xJiz.O) 

We will investigate solutions corresponding to periodic waves travelling along the channel 

~=cp(x)e’(“+~), k>O; cp+O, 1x1+= 

From Eqs (1.3) we find the solution 

q(x) = C,e’” + Cze-‘~, I xl c 1 

cp(x)=C_e”, xc-l; cp(x)=C+e-% x>l; n*=y*-k* 

(1.5) 

(1.6) 

Substituting expressions (1.6) with the four constants C i,*, C* into (1.4), we obtain an algebraic system 
of four linear homogeneous equations for CQ, C, 

C,e-’ = C,e*jn + C2erin, T C,esk = in( C,~Z*~” - C2er”) (1.7) 

This system has solutions corresponding to waves which are symmetric and anti-symmetric about the 
plane x = 0 and satisfy the conditions C, = C_, Ci = C2 and C, = -C_, C1 = -C2, respectively. The 
condition for Eqs (1.7) to have non-trivial solutions is that the determinant should vanish, which may 
be represented as a product AJy, k)A&y, k), where 

As = n sin n - k cos n, A, = n cos n + k sin n (1.8) 

correspond to the determinants of the systems obtained from (1.7) for symmetric and anti-symmetric 
waves. 

The solid curves in Fig. 1 are dispersion curves corresponding to non-trivial solutions. In view of 
the symmetry, only the first quadrant of the k, y plane is shown. Even (odd) j values correspond to 
symmetric (anti-symmetric) waves. The dispersion curves have the following asymptotic form as 
PI +o 

y,=fi, yjkE+ k 
2 [(j-l)n]* j” (1.9) 

As k + m all the curves asymptotically approach the straight line y = k. In dimensional variables, in 
the limit as a + 0, the curve yl coincides with the frequency axis. The other curves “li go off to infinity 
in the y direction. 

The dashed curves in Fig. 1 are dispersion curves for natural oscillations in a channel with rigid side 
walls described by the equations sin n = 0 and cos n = 0, for symmetric and anti-symmetric waves. 
These relationships are readily obtained by substituting the first relation of (1.6) into the boundary 
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Fig. 1. 
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Fig. 2. 

conditions &p/ax = 0 for 1 x 1 = 1. In this case the first mode corresponding to a symmetric wave is a 
plane wave propag,ating along they axis in a liquid with a free surface. 

It can be seen from (1.6) that the solution for natural oscillations in a channel is a superposition of plane waves 
propagating in a liquid with a free surface in different directions of thex axis. Clearly, the dispersion curves of the 
tirst modes of vibration in an ice channel and in a channel with side walls differ significantly only in the low-frequency 
region. The group velocity of the natural oscillations in the first case is greater than in the second case. 

Ice cow+ represented by an elastic plate. We consider a layer of shallow liquid under an elastic plate 
with a gap having the shape of an infinite strip with straight edges. In dimensionless variables (1.2) the 
equations of motion of the liquid may be written in the form 

(1.10) 

D= Eh3 
12pg(l- v2)a4 

where E, v and h ame Young’s modulus, Poisson’s ratio and the thickness, respectively, of the elastic 
plate, and p is the density of the liquid. 

The solution of (1.10) must satisfy the laws of conservation (1.4) and must be such that the transverse 
forces and bending moments acting at the edge of the elastic plate vanish [l] 

lim~($+V-$)rj=O lim:$($+V’$)Tl=O. V’=2-V (1.11) 

We will investigate solutions of problem (l.lO), (1.4), (1.11) that satisfy conditions (1.5). Substituting 
(1.5) into (l.lO), we find that when 1 x 1 < 1 the solution is given by formulae (1.6), but when 1 x I > 1 
we have 

(1.12) 
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The plus and minus signs in (1.12) correspond to the regions n > 1 and x < -1. The numbers 
Lj = $(y, k) are the roots of the dispersion equation 
condition Im hi > 0. This is satisfied when ? < y? = d 

= (k + A*)[1 + D(k2 + n)“]” that satisfy the 
(1 + Dk4). 

To determine the eight unknown constants C’f; Cig, we derive from (1.4) and (1.11) the following 
system of eight homogeneous linear algebraic equations 

i c;(q +vkQhZj +k*)P’ =o 
j=l 

i c;hj(x; +v’k2)(%2j +k*p.’ =o 
j=l 

(1.13) 

(1.14) 

The solutions of Eqs (1.13) and (1.14) for symmetric and anti-symmetric waves have the form C+ = 
C-9 Cj’ = Cj- and C+ = -C_, Cj’ = -Cj-, respectively. We will not present explicit expressions for the 
determinants AJy, k) and A&y, k) of the matrices of order four representing symmetric and anti- 
symmetric waves. 

Numerical investigations show that the dispersion curves described by the equations 4 k 0 and & 
= 0 have the form shown in Fig. 2, where even and oddj correspond to symmetric and anti-symmetric 
waves, respectively. The curve yl originates from the origin. The initial point of the other curves v lies 
ono the curve p. As k + 00 all the curves tend to the straight line y = k. 

It is easy to see that in dimensional variables, as a + 0, the initial points of all the dispersion curves 
fori > 1 go to inIinity. In this limiting case the curve yr corresponds to a symmetric edge wave propagating 
along a crack in an elastic plate floating on a liquid surface [l]. The dispersion curve for this edge wave 
is represented in Fig. 3 by the curve yS 

Note that one other edge wave has been observed [l], corresponding to an anti-symmetric mode. This is due to 
the substitution v = v’ in the contact-boundary conditions (1.11) [l]. 

Consider a liquid of finite depth H. In that case the dispersion relations will depend on the 
dimensionless parameter a/H, which was previously equated to zero. In what follows we will denote 
the dimensionless parameter H/u by H. It has been shown [4] that the dispersion curve for a symmetric 
edge wave yl(k) travelling along a crack in an elastic plate has the form represented in Fig. 3 by the 
dashed curve yy. In a liquid of finite depth, the curve y? represents plane waves travelling along 
the crack. There is no anti-symmetric edge mode. 

If the dimensionless depth of the liquid is sufficiently small, the points of inflection of the dispersion 
curves ySH, y? lie in a region where the shallow-water approximation holds. Therefore, the dispersion 

I Y 
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curve #, describing the first mode of a symmetric wave in the channel in a liquid of kite depth, may 
have the form shown in Fig. 4. It can be seen that ysH has two points of inflection. As k + = the curve 
yl asymptotically approaches the dispersion curve yOH for waves in a liquid of finite depth, where (yOH)2 
= kth (kH). The initial point of the other curve for higher oscillation modes in the channel will lie, as 
before, on they? curve. 

2. RESONANCE EXCITATION OF NATURAL OSCILLATIONS 

We will consider the problem of exciting waves in a channel which travel at a constant velocity V and 
have an oscillating pressure field Hy - M, x)e’“. The equations of motion of the liquid in a reference 
frame moving at velocity V are, in dimensionless variables 

-=cx<+= 

(2.1) 

(9+q+DA2q=0, Ixl>l 

a2 a2 
e=y-Vt, A=,52+z 

It is assumed that the motion begins at a time t = 0 from a state of rest 

q=o, cp=o, t=O (2.2) 

At t > 0 waves will be excited in the channel. Since the wave velocity is finite, the region occupied 
by waves at any finite instant of time will be finite. We may therefore replace the functions cp and q by 
their Fourier-Laplace transforms with respect to 5 and t 

The Fourier transforms w and 5 should not have singularities near the real axis k, and the contour of 
integration may be deformed in its neighbourhood. In order to analyse the Fourier solution, we split 
the integrals into a sum, where each term corresponds to waves of a certain type. The integrand may 
then have singularities on the real k axis. The deformation of the contour in the general solution of [8] 
was necessary to ascertain the asymptotic behaviour at long times t of forced waves propagating at the 
velocity of motion of an external load. 

It follows from (2.1) and (2.2) that 

(I - ikV)C + c 1 g-t2 yl=o 

2 

(I-ikV)v+c+D w=o, Ixl>l (2.3) 

P’(k xl 
(I-ikV)y+c+z=O, I-d<1 

In what follows we will confine our attention to the case in which Pf is independent of x. 
The solution of Eqs (2.3) for 1 x 1 > 1 is given by formulae (1.12), where 4 = $(! - ikV, k) are the 

roots of the equation 
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that satisfy the condition Im% > 0. 
The solution of Eqs (2.3) for 1 x 1 < 1 has the form 

~(1, k, x) = C,eem + C2eW - 
P,(l-ikV) 

(I - io)m* ’ 
tn* = (1 -i&V)* + k* (2.4) 

Substituting (1.12) and (2.4) into Eqs (1.4) and (l.ll), we obtain an inhomogeneous system of eight 
linear algebraic equations for the constants Cl,*, C F Four of them are identical with (1.13). The other 
four equations are 

(2.5) 

The solution of Eqs (1.13) and (2.5) is 

(G.29 q>= 
Pf(I-ikW&,2, $1 

A(1 - iw)m* 

where El,*, ET, A are functions of 1 - ikV and k, and A(Z - ikV, k) is the determinant of the system of 
equations (1.13) and (1.14) after making the substitution 1 - ikV + iY. 

Performing the inverse Fourier and Laplace transformation, we obtain 

The solution for 1 x 1 > 1 is determined in a similar way. 
The integrals in the last expression are evaluated by residues in the planes of the complex variables 

1 and k. We will consider the residues corresponding to the zeros of the functions A(1 - ikV, k). The 
zeros of A on the complex 1 axis correspond to the natural oscillations in the channel. Hence, in the 
neighbourhood of each zero we can write 

A = (1- i&V + iY j (&))A’ 

Denote the part of the solution corresponding to the residue 1 = 
the formula for the solution that 

4 = i(kV- x(k)) by gk We find from 

(2.6) 

Let us investigate the asymptotic behaviour of the integral (2.6) at high t values. In the neighbourhood 
of k = k. we rewrite the expression kV - x- o as 

aYj 

YJW = ~t=q, 

Suppose that the pressure field is moving at the group velocity of the natural mode of the waveguide 
with wave number k. in the direction of y, that is, the following equation is satisfied 

v=rj(k,) (2.7) 

and the oscillation frequency of the external pressure is such that the frequency of natural oscillations 
of the external pressure field equals the frequency of the wave in a reference frame attached to the 
moving load 

o = “I(ko) - &,-,I’ (2.8) 
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It follows from (2..7) and (2.8) that the integrand in (2.6) has a singularity of the type (k - Q2 in the 
denominator, while its numerator is proportional to exp [i(k - k0)2t]. The principal contribution to the 
asymptotic behaviour of the solution for large t comes from an integral of type (2.6) around a contour 
C in the neighbourhood of k = ko. The contour C in the complex k plane consists of two half-lines that 
approach the point k = k,-,. The contour C in the complex k plane consists of two half-lines that approach 
the point k = ko at an angle x/4 and describe a semicircle around k = k. [8]. It has been shown that 

;f(Z) ;: 52 = 2f(0)e-i~'4(7Lt)~ +ixf'(o)+o(t-K) 

Thus, as t + 00 the integral pj is proportional to exp (ht)dt. If the velocity of the load equals the 
external phase velocity of natural oscillations in the channel, then the integral (2.6) will increase in 
proportion to dt, and o = 0. In what follows we will call these “resonance velocities”. The wave numbers 
of waves with minimum phase velocity are denoted by kj in Fig. 2. At these points the resonance velocity 
V equals the slope of the tangent through the origin to the dispersion curve 3. The numbers kj are 
functions of a single dimensionless parameter D. 

It can be seen that in a liquid of finite depth one further resonance velocity, equal to JcgH) may appear, 
since a natural wave moving at this velocity has an extremal phase velocity. This phase velocity is a 
minimum. Thus, unlike the case of a continuous ice cover [8], when there are only two resonance 
velocities, when a load is moving on the surface of a channel in the ice cover there are several resonance 
velocities. 

Note that conditions (2.7) and (2.8) may be satisfied when one is investigating the two-dimensional 
problem of a vibrati:ng load moving on the surface of a liquid layer with a free surface. In that case the 
amplitude of the farced oscillations will also increase with time in proportion to dt. In the three- 
dimensional case resonance phenomena may disappear owing to two-dimensional dispersive effects. 

3. RESONANCE INTERACTIONS OF WAVES IN A CHANNEL 

It was shown above that the natural oscillations of a liquid in a channel have a dispersion relation 
with several branches. It is of interest to study the influence of non-linear effects on the possible 
interactions between waves corresponding to different branches. As will be seen below, for any wave 
in a higher mode, waves in the first mode exist to which energy is transferred as time passes. For 
simplicity, we will consider the case of a channel in .a rigid cap floating on a liquid surface (Section 1). 

The conditions for three-wave resonance interaction are 

Y,(k,)=~b(k~)+~f(k3), k, =k, +k, (3.1) 

where yabc(k) are the branches of the dispersion relation (1.8) which can be conveniently rewritten as 
follows: 

A(Y, k)=e-‘“(~k~-in)+(-l)ae’“(~k~+in)=O 

Even (odd) 01 correspond to symmetric (anti-symmetric) waves. 

(3.2) 

Resonance triads are easily constructed graphically, using the well-known procedure of [9]. We select 
an arbitrary point A with coordinates (yAkA) on the dispersion curve (DC) of the first mode 
corresponding to a symmetric wave. We will study the various resonance interactions that involve the 
wave (Y.&t). To do so, we displace the origin to A and construct new DCs through A. These are shown 
in Fig. 5 by dashed curves. Let Ci, C2, . . . be the points at which the dashed DC intersects the tist 
branch yl with the solid DCs. A straight line through the origin parallel to ACj has a point of intersection, 
say Bj, with the solid DC Yl. It is obvious that OBj = ACj. Hence it follows that 

yCj =yA+YBj* kcj =kA+kq (3.3) 

The points Bj and Ci have coordinates (yBj, kBj) and (yc., kcj), respectively. Obviously, formulae (3.3) 
are analogous to conditions (3.1). Thus, a wave in each high-frequency mode has a property of decay 
instability with respect to waves in the first low-frequency mode travelling in opposite directions. We 
can also consider resonance interactions between higher-mode waves. 
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Fig. 6. 

We now consider the derivation of the equations of non-linear resonance interaction of wave packets. 
In dimensionless variables, the non-linear shallow-water equations are 

2 + EV((IJ + l)Vq) + Acp = 0, acp a dt+2(V(p)*+lJ=o 

When 1 x 1 > 1 the potential cp satisfies Laplace’s equation. The small parameter E equals the ratio 
of the depth of submersion of the plate to a characteristic horizontal scale Q, equal to half the width 
of the channel (Fig. 6). 

By the law of conservation of mass 

T acp limz 2 = lim, 
[ 
&l+E+nl) 1 

It follows from (3.5) and the pressure continuity condition on the straight line z = 0 (Fig. 6) that the 
velocity potential cp is continuous at 1 x 1 = 1 

lim: cp = limz cp + @a*) (3.6) 

(allowance has been made for the fact that the velocity jumps for a liquid particle along the direction 
vat Ix I = 1 are of the order of a*). 

Equations (3.4) and (3.6), considered to within O/E, yield the following problem of determining the 
potential cp 

($-(l+c)A)~+c+)*++($)‘]=O, IxlCl 

Acp=O, l_xl>l 

lim: -!f! - lim’ _a,, - *[$(l+E-E$)], limicp=limEcp 

(3.7) 

(3.8) 

We will seek the solution of (3.7) in the form 

(p=,~,‘pj(7, Y, X)eiej +C.C.+O(&) (3.9) 
‘_ 

8, = yht + k,y, 8, = y,t + k2y, 8, = y,t + k3y, T = Et, Y = &y 

The quantities yObc and kits satisfy conditions (3.1). 
We deduce from (3.7) and (3.8) that, to within terms of order zero in E 
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‘pi = yfeTikjiK 
+&(Pjl +O(E’), IXl> 1 (3.10) 

where c+ = 0 for symmetric waves and = 1 for anti-symmetric waves. The plus and minus signs in 
4 the superscripts in the second formula o (3.10) correspond to the regionsx > 1 and x < -1. 

In the first approximation with respect to E, we use (3.7) and the zeroth approximation (3.8) to find 
‘pi1 and, after substituting expressions (3.10) into boundary conditions (3.8) we obtain 

iLjqjo = WjNjl j = 1,2,3; Lj = 
fg., &+%I,;4 & 

4 = ‘p;o’pm N2 = (P;o%o~ 4 = (PIO(P~O 

The coefficients Fc are functions of yobs and kj, but the formulae are cumbersome and will not be 
given here. The numerical expressions Wj have been analysed numerically for specific resonance triads. 

The relation 

aA aA -’ 
-ak ar ( )I 

= cj 
k=kj 

is equal to the group velocity of the wave packet rp,~ along they axis. Thus, we have shown that the reson- 
ance interaction of natural oscillations in the channel is described by the standard equations of three- 
wave interaction, the properties of whose solutions have been thoroughly investigated [lo]. It has been 
shown that complete decay of the pumping wave (a30 occurs if its group velocity is such that c3 E (ci, ~2). 
In the problem under consideration, this is the case if the waves cplo and cpzo travel in opposite directions. 

There is no allowance for dispersion in Eqs (3.7), and it can therefore be shown that the waves must 
break. However, it :follows from conditions (3.8) that the processes by which higher harmonics are 
generated are not resonance processes, since oscillations with multiple frequencies and wave numbers 
along they axis are not natural waves in the channel. Hence the waves do not break in this case. 

4. CONCLUSIONS 

The investigations described in this paper show that there is a profound analogy between natural 
oscillations of a liquid in an ordinary channel and in an ice channel. As a boat moves through an ice 
channel, some of the energy is radiated to infinity as flexural-gravity waves, and part of the boat’s energy 
is used to produce natural oscillations in the channel. In the limiting case, when the rigidity of the ice 
cover is infinitely large (the approximation of a solid cap), there are no flexural-gravity waves and all 
the boat’s energy is expended in producing natural oscillations and overcoming friction. 

In an ordinary channel, the onset of the critical regime is due to the mutual influence of natural 
oscillations. One might expect that in an ice channel, as the velocity of motion increases, there should 
again be a tendency for the water level near the boat to fall and for a solitary wave to form ahead of 
the boat. A solitary wave would obviously represent a non-linear formation of natural oscillations of 
the first mode. By analogy with an ordinary channel, we estimate the critical velocity u1 [7] as being in 
the range 0.55@T) < ‘ul =z J(gH). Setting H = 10 m and H = 50 m, we obtain estimates for the first 
critical velocity: 5.4 m/s < q < 10 m/s and 12 m/s < u1 c 22 m/s, respectively. The typical speeds of 
boats in ice channels do not exceed 8 m/s. Hence it is clear that critical modes of motion can only occur 
in very shallow water. 

Note that the wave resistance of a boat moving in a channel may increase because of the influence 
of natural oscillations on the hull. mica1 periods of such oscillations lie in the range from 1 to 10 s, 
that is, o E (0.6, 6) s-l. 

Using formulae (2.7) and (2.8), we can estimate the speeds of a boat at which the amplitude of forced 
waves in the first mode of natural oscillations in the channel increases. It has been shown that the 
dispersion curve of the first mode differs only slightly from the dispersion curve of plane waves 
propagating in a liquid with a free surface. We may therefore set v(k) = ye(k) = dCgkth (w-l)) in (2.7) 
and (2.8) to obtain estimates. 
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Fig. 7. 

In the part of Fig. 7 plotted in the V, k plane, the vertical axis represents the velocity of motion V in 
m/s, and the horizontal axis is the wave number k in m-’ . The curve shown in the V, k plane corresponds 
to the group velocity of a plane wave fo(k) at H = 50 m. It can be seen that the wave number of a wave 
with group velocity less than 8 m/s is greater than 0.04 m-‘. 

In the part of Fig. 7 plotted in the o, k plane, the vertical axis represents the frequency o in s-l, and 
the horizontal axis is the wave number k in m-‘. The curves shown in Fig. 7 in the o, k plane are described 
by the equations o = 1 kV - d(gkth (wi)) 1 for H = 50 m and various values of V. It can be seen that 
when k > 0.04 m-l there are always velocities less than 8 m/s at which w E (0.6, 6) s-l. We have thus 
shown that there are always speed of motion of an external load, within the range of possible speeds 
of the boat, and correspanding frequencies in the range of characteristic frequencies of vibrations of 
the hull, at which the first vibration mode will be produced in the channel. 
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